Search results for "Ambient field"

showing 2 items of 2 documents

Zero-field magnetometry based on nitrogen-vacancy ensembles in diamond

2018

Ensembles of nitrogen-vacancy (NV) centers in diamonds are widely utilized for magnetometry, magnetic-field imaging and magnetic-resonance detection. They have not been used for magnetometry at zero ambient field because Zeeman sublevels lose first-order sensitivity to magnetic fields as they are mixed due to crystal strain or electric fields. In this work, we realize a zero-field (ZF) magnetometer using polarization-selective microwave excitation in a 12C-enriched HPHT crystal sample. We employ circularly polarized microwaves to address specific transitions in the optically detected magnetic resonance and perform magnetometry with a noise floor of 250 pT/Hz^(1/2). This technique opens the …

Materials scienceMagnetometerGeneral Physics and Astronomychemistry.chemical_elementFOS: Physical sciences02 engineering and technologyApplied Physics (physics.app-ph)engineering.material01 natural sciences010305 fluids & plasmaslaw.inventionCrystalsymbols.namesakeZero fieldlawAmbient fieldVacancy defectElectric field0103 physical sciences010306 general physicsQuantum PhysicsZeeman effectCondensed matter physicsZero (complex analysis)DiamondPhysics - Applied Physics021001 nanoscience & nanotechnologyNitrogenMagnetic fieldchemistryengineeringsymbols0210 nano-technologyQuantum Physics (quant-ph)Ground stateMicrowaveExcitationSymposium Latsis 2019 on Diamond Photonics - Physics, Technologies and Applications
researchProduct

Laboratory disruption of scaled astrophysical outflows by a misaligned magnetic field

2021

The shaping of astrophysical outflows into bright, dense, and collimated jets due to magnetic pressure is here investigated using laboratory experiments. Here we look at the impact on jet collimation of a misalignment between the outflow, as it stems from the source, and the magnetic field. For small misalignments, a magnetic nozzle forms and redirects the outflow in a collimated jet. For growing misalignments, this nozzle becomes increasingly asymmetric, disrupting jet formation. Our results thus suggest outflow/magnetic field misalignment to be a plausible key process regulating jet collimation in a variety of objects from our Sun’s outflows to extragalatic jets. Furthermore, they provide…

ScienceAstrophysics::High Energy Astrophysical PhenomenaNozzleoutflows magnetohydrodynamics(MHD) shockwaves astrophysical jetsGeneral Physics and AstronomyFOS: Physical sciencesAstrophysics01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyCollimated lightSettore FIS/05 - Astronomia E AstrofisicaAmbient field0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsMagnetic pressure010306 general physics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsLaboratory astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Jet (fluid)MultidisciplinaryQLaser-produced plasmasGeneral ChemistryPhysics - Plasma PhysicsMagnetic fieldPlasma Physics (physics.plasm-ph)Astrophysics - Solar and Stellar AstrophysicsPhysics::Accelerator PhysicsOutflowHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct